Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.180
Filtrar
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230109, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38705188

RESUMEN

Aquatic insects are a major indicator used to assess ecological condition in freshwater environments. However, current methods to collect and identify aquatic insects require advanced taxonomic expertise and rely on invasive techniques that lack spatio-temporal replication. Passive acoustic monitoring (PAM) is emerging as a non-invasive complementary sampling method allowing broad spatio-temporal and taxonomic coverage. The application of PAM in freshwater ecosystems has already proved useful, revealing unexpected acoustic diversity produced by fishes, amphibians, submerged aquatic plants, and aquatic insects. However, the identity of species producing sounds remains largely unknown. Among them, aquatic insects appear to be the major contributor to freshwater soundscapes. Here, we estimate the potential number of soniferous aquatic insects worldwide using data from the Global Biodiversity Information Facility. We found that four aquatic insect orders produce sounds totalling over 7000 species. This number is probably underestimated owing to poor knowledge of aquatic insects bioacoustics. We then assess the value of sound producing aquatic insects to evaluate ecological condition and find that they might be useful despite having similar responses in pristine and degraded environments in some cases. Both expert and automated identifications will be necessary to build international reference libraries and to conduct acoustic bioassessment in freshwaters. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Asunto(s)
Acústica , Biodiversidad , Agua Dulce , Insectos , Animales , Insectos/fisiología , Organismos Acuáticos/fisiología , Monitoreo del Ambiente/métodos
2.
Sci Rep ; 14(1): 9579, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671082

RESUMEN

Marine animal forest (MAF) are animal-dominated megabenthic communities that support high biodiversity levels and play key roles in ecosystem functioning. However, there is limited data available in Patagonian waters related to the presence of these vulnerable benthic communities. We report a monospecific MAF of Errina antartica in Angostura Tomms, which represents the southernmost known living MAF of this species. With coverages reaching up to 28.5% of the substrate from 1.23 m to, at least, 33 m depth is the shallowest stylasterid assemblage described worldwide to date. The size of the colonies ranged from 0.14 to 15.8 cm, with small colonies (< 10 cm) being the most abundant (99%). We hypothesize that this MAF might correspond to a recent colonization of a space, extending its distribution range towards shallower areas or it could be an assemblage formed at the limit of the species' distribution in which the environmental conditions are not optimal for the major development of the colonies. Additionally, results showed that habitats structured by three-dimensional sessile invertebrate such as E. antarctica showed higher values of species richness and alpha diversity than non-biogenic habitats. Analyses were based on 297 photos taken at 22 different sites in the western Strait of Magellan, along vertical transects from 5 to 25 m depth. Our study highlights the importance of the benthic communities existing in Patagonian waters, evidencing the need to act actively to ensure their maintenance.


Asunto(s)
Biodiversidad , Animales , Regiones Antárticas , Ecosistema , Pradera , Organismos Acuáticos/fisiología , Invertebrados/fisiología , Invertebrados/clasificación
3.
Glob Chang Biol ; 30(4): e17284, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38647253

RESUMEN

In this commentary, I will discuss how climate warming might influence the impacts of chemicals on (aquatic) ecosystems. It provides a commentary on Sinclair et al. (2024).


Asunto(s)
Organismos Acuáticos , Cambio Climático , Invertebrados , Temperatura , Animales , Invertebrados/fisiología , Invertebrados/efectos de los fármacos , Organismos Acuáticos/fisiología , Ecosistema , Contaminantes Químicos del Agua , Distribución Animal
4.
Am Nat ; 203(2): E63-E77, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306287

RESUMEN

AbstractDispersal emerges as an outcome of organismal traits and external forcings. However, it remains unclear how the emergent dispersal kernel evolves as a by-product of selection on the underlying traits. This question is particularly compelling in coastal marine systems, where dispersal is tied to development and reproduction and where directional currents bias larval dispersal downstream, causing selection for retention. We modeled the dynamics of a metapopulation along a finite coastline using an integral projection model and adaptive dynamics to understand how asymmetric coastal currents influence the evolution of larval (pelagic larval duration) and adult (spawning frequency) life history traits, which indirectly shape the evolution of marine dispersal kernels. Selection induced by alongshore currents favors the release of larvae over multiple time periods, allowing long pelagic larval durations and long-distance dispersal to be maintained in marine life cycles in situations where they were previously predicted to be selected against. Two evolutionarily stable strategies emerged: one with a long pelagic larval duration and many spawning events, resulting in a dispersal kernel with a larger mean and variance, and another with a short pelagic larval duration and few spawning events, resulting in a dispersal kernel with a smaller mean and variance. Our theory shows how coastal ocean flows are important agents of selection that can generate multiple, often co-occurring evolutionary outcomes for marine life history traits that affect dispersal.


Asunto(s)
Organismos Acuáticos , Larva , Animales , Larva/fisiología , Organismos Acuáticos/fisiología
5.
Biol Rev Camb Philos Soc ; 99(3): 965-978, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38284299

RESUMEN

Marine animal forests (MAFs) are benthic ecosystems characterised by biogenic three-dimensional structures formed by suspension feeders such as corals, gorgonians, sponges and bivalves. They comprise highly diversified communities among the most productive in the world's oceans. However, MAFs are in decline due to global and local stressors that threaten the survival and growth of their foundational species and associated biodiversity. Innovative and scalable interventions are needed to address the degradation of MAFs and increase their resilience under global change. Surprisingly, few studies have considered trophic interactions and heterotrophic feeding of MAF suspension feeders as an integral component of MAF conservation. Yet, trophic interactions are important for nutrient cycling, energy flow within the food web, biodiversity, carbon sequestration, and MAF stability. This comprehensive review describes trophic interactions at all levels of ecological organisation in tropical, temperate, and cold-water MAFs. It examines the strengths and weaknesses of available tools for estimating the heterotrophic capacities of the foundational species in MAFs. It then discusses the threats that climate change poses to heterotrophic processes. Finally, it presents strategies for improving trophic interactions and heterotrophy, which can help to maintain the health and resilience of MAFs.


Asunto(s)
Organismos Acuáticos , Cambio Climático , Animales , Organismos Acuáticos/fisiología , Procesos Heterotróficos , Ecosistema
6.
Mar Pollut Bull ; 199: 115978, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38217911

RESUMEN

The detrimental effects of anthropogenic underwater noise on marine organisms have garnered significant attention among scientists. This review delves into the research concerning the repercussions of underwater noise on marine species, with specific emphasis on the physiological and molecular responses of marine biota. This review investigates the sensory mechanisms, hearing sensitivity, and reaction thresholds of diverse marine organisms, shedding light on their susceptibility to underwater noise disturbances. The physiological and molecular effects of anthropogenic underwater noise on marine biota include oxidative stress, energy homeostasis, metabolism, immune function, and respiration. Additionally, changes in the gene expression profile associated with oxidative stress, metabolism, and immunological response are among the responses reported for marine biota. These effects pose a threat to animal fitness and potentially affect their survival as individuals and populations.


Asunto(s)
Organismos Acuáticos , Ruido , Humanos , Animales , Organismos Acuáticos/fisiología , Audición/fisiología , Biota
7.
Sci Total Environ ; 912: 169348, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38104837

RESUMEN

Bioinspired surfaces, due to their nano and micro topographical features, offer a promising approach for the development of novel antifouling solutions. The study of surface topography has gained popularity in recent years, demonstrating significant potential in mimicking natural structures that could be manufactured for application in the marine environment. This research focuses on investigating the antifouling (AF) performance of bio-inspired micro-textures inspired by Brill fish scales, Scophthalmus rhombus, under static laboratory conditions, using two common fouling diatom species, Amphora coffeaeformis and Nitzschia ovalis. In this study, we evaluate six engineered surfaces, inspired by Brill fish scales, fabricated through a 2-photon polymerization (2PP) process, for their potential as antifouling solutions. The investigation explores the settlement behaviour of microfouling organisms, comparing these mechanisms with theoretical models to guide the future design of antifouling materials. A key emphasis is placed on the impact of surface topography on the disruption of cellular response. Our results suggest that cells smaller than 10 µm, exceeding the peak-to-peak distances between surface features, comfortably position themselves between adjacent features. On the other hand, as peak-to-peak distances decrease, cells shift from settling within uniform gaps to resting on top of surface features. Surfaces with sharpened edges demonstrate a more substantial reduction in diatom attachments compared to those with rounded edges. Furthermore, all micro-textured surfaces exhibit a significant decrease in colony formation compared to control samples. In conclusion, this study shows the potential to manipulate cellular responses through topographical features, providing valuable insights for the design of effective antifouling materials. The results contribute to the growing body of knowledge in biomimetic antifouling strategies using a novel marine organism for inspiration to design practical structures that can be replicated.


Asunto(s)
Incrustaciones Biológicas , Materiales Biomiméticos , Diatomeas , Lenguado , Animales , Incrustaciones Biológicas/prevención & control , Propiedades de Superficie , Diatomeas/fisiología , Organismos Acuáticos/fisiología , Materiales Biomiméticos/química
8.
Nature ; 622(7983): 545-551, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758946

RESUMEN

Trilobites are among the most iconic of fossils and formed a prominent component of marine ecosystems during most of their 270-million-year-long history from the early Cambrian period to the end Permian period1. More than 20,000 species have been described to date, with presumed lifestyles ranging from infaunal burrowing to a planktonic life in the water column2. Inferred trophic roles range from detritivores to predators, but all are based on indirect evidence such as body and gut morphology, modes of preservation and attributed feeding traces; no trilobite specimen with internal gut contents has been described3,4. Here we present the complete and fully itemized gut contents of an Ordovician trilobite, Bohemolichas incola, preserved three-dimensionally in a siliceous nodule and visualized by synchrotron microtomography. The tightly packed, almost continuous gut fill comprises partly fragmented calcareous shells indicating high feeding intensity. The lack of dissolution of the shells implies a neutral or alkaline environment along the entire length of the intestine supporting digestive enzymes comparable to those in modern crustaceans or chelicerates. Scavengers burrowing into the trilobite carcase targeted soft tissues below the glabella but avoided the gut, suggesting noxious conditions and possibly ongoing enzymatic activity.


Asunto(s)
Artrópodos , Fósiles , Intestinos , Animales , Artrópodos/anatomía & histología , Artrópodos/enzimología , Artrópodos/fisiología , Evolución Biológica , Crustáceos/enzimología , Sincrotrones , Concentración de Iones de Hidrógeno , Intestinos/química , Intestinos/enzimología , Intestinos/metabolismo , Organismos Acuáticos/enzimología , Organismos Acuáticos/fisiología
9.
Glob Chang Biol ; 29(17): 5033-5043, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37401451

RESUMEN

Forecasting long-term consequences of global warming requires knowledge on thermal mortality and how heat stress interacts with other environmental stressors on different timescales. Here, we describe a flexible analytical framework to forecast mortality risks by combining laboratory measurements on tolerance and field temperature records. Our framework incorporates physiological acclimation effects, temporal scale differences and the ecological reality of fluctuations in temperature, and other factors such as oxygen. As a proof of concept, we investigated the heat tolerance of amphipods Dikerogammarus villosus and Echinogammarus trichiatus in the river Waal, the Netherlands. These organisms were acclimated to different temperatures and oxygen levels. By integrating experimental data with high-resolution field data, we derived the daily heat mortality probabilities for each species under different oxygen levels, considering current temperatures as well as 1 and 2°C warming scenarios. By expressing heat stress as a mortality probability rather than a upper critical temperature, these can be used to calculate cumulative annual mortality, allowing the scaling up from individuals to populations. Our findings indicate a substantial increase in annual mortality over the coming decades, driven by projected increases in summer temperatures. Thermal acclimation and adequate oxygenation improved heat tolerance and their effects were magnified on longer timescales. Consequently, acclimation effects appear to be more effective than previously recognized and crucial for persistence under current temperatures. However, even in the best-case scenario, mortality of D. villosus is expected to approach 100% by 2100, while E. trichiatus appears to be less vulnerable with mortality increasing to 60%. Similarly, mortality risks vary spatially: In southern, warmer rivers, riverine animals will need to shift from the main channel toward the cooler head waters to avoid thermal mortality. Overall, this framework generates high-resolution forecasts on how rising temperatures, in combination with other environmental stressors such as hypoxia, impact ecological communities.


Asunto(s)
Anfípodos , Organismos Acuáticos , Cambio Climático , Calentamiento Global , Respuesta al Choque Térmico , Anfípodos/fisiología , Temperatura , Aclimatación , Organismos Acuáticos/fisiología , Ríos , Países Bajos , Monitoreo del Ambiente
10.
Environ Toxicol Chem ; 42(6): 1371-1385, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37014181

RESUMEN

A series of chronic toxicity tests was conducted exposing three aquatic species to iron (Fe) in laboratory freshwaters. The test organisms included the green algae Raphidocelis subcapitata, the cladoceran Ceriodaphnia dubia, and the fathead minnow Pimephales promelas. They were exposed to Fe (as Fe (III) sulfate) in waters under varying pH (5.9-8.5), hardness (10.3-255 mg/L CaCO3 ), and dissolved organic carbon (DOC; 0.3-10.9 mg/L) conditions. Measured total Fe was used for calculations of biological effect concentrations because dissolved Fe was only a fraction of nominal and did not consistently increase as total Fe increased. This was indicative of the high concentrations of Fe required to elicit a biological response and that Fe species that did not pass through a 0.20- or 0.45-µm filter (dissolved fraction) contributed to Fe toxicity. The concentrations frequently exceeded the solubility limits of Fe(III) under circumneutral pH conditions relevant to most natural surface waters. Chronic toxicity endpoints (10% effect concentrations [EC10s]) ranged from 442 to 9607 µg total Fe/L for R. subcapitata growth, from 383 to 15 947 µg total Fe/L for C. dubia reproduction, and from 192 to 58,308 µg total Fe/L for P. promelas growth. Toxicity to R. subcapitata was variably influenced by all three water quality parameters, but especially DOC. Toxicity to C. dubia was influenced by DOC, less so by hardness, but not by pH. Toxicity to P. promelas was variable, but greatest under low hardness, low pH, and low DOC conditions. These data were used to develop an Fe-specific, bioavailability-based multiple linear regression model as part of a companion publication. Environ Toxicol Chem 2023;42:1371-1385. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Cyprinidae , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos/fisiología , Materia Orgánica Disuelta , Hierro/toxicidad , Dureza , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/toxicidad , Cyprinidae/fisiología
11.
Biol Open ; 12(3)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36942843

RESUMEN

Although much research has focused on marine mammal sensory systems over the last several decades, we still lack basic knowledge for many of the species within this diverse group of animals. Our conference workshop allowed all participants to present recent developments in the field and culminated in discussions on current knowledge gaps. This report summarizes open questions regarding marine mammal sensory ecology and will hopefully serve as a platform for future research.


Asunto(s)
Organismos Acuáticos , Mamíferos , Sensación , Animales , Mamíferos/fisiología , Organismos Acuáticos/fisiología , Sensación/fisiología
13.
Ann Rev Mar Sci ; 15: 509-538, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36028229

RESUMEN

The regular movements of waves and tides are obvious representations of the oceans' rhythmicity. But the rhythms of marine life span across ecological niches and timescales, including short (in the range of hours) and long (in the range of days and months) periods. These rhythms regulate the physiology and behavior of individuals, as well as their interactions with each other and with the environment. This review highlights examples of rhythmicity in marine animals and algae that represent important groups of marine life across different habitats. The examples cover ecologically highly relevant species and a growing number of laboratory model systems that are used to disentangle key mechanistic principles. The review introduces fundamental concepts of chronobiology, such as the distinction between rhythmic and endogenous oscillator-driven processes. It also addresses the relevance of studying diverse rhythms and oscillators, as well as their interconnection, for making better predictions of how species will respond to environmental perturbations, including climate change. As the review aims to address scientists from the diverse fields of marine biology, ecology, and molecular chronobiology, all of which have their own scientific terms, we provide definitions of key terms throughout the article.


Asunto(s)
Organismos Acuáticos , Relojes Biológicos , Animales , Organismos Acuáticos/fisiología , Biología Marina , Océanos y Mares , Ecosistema
14.
Proc Natl Acad Sci U S A ; 119(28): e2201345119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35787059

RESUMEN

Rising temperatures are associated with reduced body size in many marine species, but the biological cause and generality of the phenomenon is debated. We derive a predictive model for body size responses to temperature and oxygen (O2) changes based on thermal and geometric constraints on organismal O2 supply and demand across the size spectrum. The model reproduces three key aspects of the observed patterns of intergenerational size reductions measured in laboratory warming experiments of diverse aquatic ectotherms (i.e., the "temperature-size rule" [TSR]). First, the interspecific mean and variability of the TSR is predicted from species' temperature sensitivities of hypoxia tolerance, whose nonlinearity with temperature also explains the second TSR pattern-its amplification as temperatures rise. Third, as body size increases across the tree of life, the impact of growth on O2 demand declines while its benefit to O2 supply rises, decreasing the size dependence of hypoxia tolerance and requiring larger animals to contract by a larger fraction to compensate for a thermally driven rise in metabolism. Together our results support O2 limitation as the mechanism underlying the TSR, and they provide a physiological basis for projecting ectotherm body size responses to climate change from microbes to macrofauna. For small species unable to rapidly migrate or evolve greater hypoxia tolerance, ocean warming and O2 loss in this century are projected to induce >20% reductions in body mass. Size reductions at higher trophic levels could be even stronger and more variable, compounding the direct impact of human harvesting on size-structured ocean food webs.


Asunto(s)
Organismos Acuáticos/fisiología , Tamaño Corporal , Cambio Climático , Oxígeno , Animales , Agua de Mar/microbiología , Temperatura
15.
Dokl Biol Sci ; 503(1): 68-71, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35437738

RESUMEN

Trematodes found in the enteropneust hemichordates are described for the first time. Metacercariae have been found in the trunk coelom, in the collar coelom, in the proboscis coelom, and in the glomerulus of the deep-sea torquaratorid Quatuoralisia malakhovi Ezhova et Lukinykh, 2022. This is the first find of parasites in the glomerulus of acorn worms. The taxonomy of the found trematodes is discussed.


Asunto(s)
Cordados no Vertebrados , Trematodos , Animales , Organismos Acuáticos/fisiología
16.
PLoS One ; 17(2): e0254910, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213532

RESUMEN

The mutualism between the thioautotrophic bacterial ectosymbiont Candidatus Thiobius zoothamnicola and the giant ciliate Zoothamnium niveum thrives in a variety of shallow-water marine environments with highly fluctuating sulfide emissions. To persist over time, both partners must reproduce and ensure the transmission of symbionts before the sulfide stops, which enables carbon fixation of the symbiont and nourishment of the host. We experimentally investigated the response of this mutualism to depletion of sulfide. We found that colonies released some initially present but also newly produced macrozooids until death, but in fewer numbers than when exposed to sulfide. The symbionts on the colonies proliferated less without sulfide, and became larger and more rod-shaped than symbionts from freshly collected colonies that were exposed to sulfide and oxygen. The symbiotic monolayer was severely disturbed by growth of other microbes and loss of symbionts. We conclude that the response of both partners to the termination of sulfide emission was remarkably quick. The development and the release of swarmers continued until host died and thus this behavior contributed to the continuation of the association.


Asunto(s)
Cilióforos/genética , Rhizobiaceae/genética , Sulfuros/metabolismo , Simbiosis/genética , Animales , Organismos Acuáticos/genética , Organismos Acuáticos/fisiología , Bacterias/genética , Ciclo del Carbono/genética , Cilióforos/fisiología , Filogenia , Rhizobiaceae/fisiología
17.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35163666

RESUMEN

Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.


Asunto(s)
Trastornos de la Motilidad Ciliar/genética , Modelos Animales de Enfermedad , Animales , Organismos Acuáticos/fisiología , Técnicas de Cultivo de Célula , Humanos , Mamíferos/fisiología
18.
Sci Rep ; 12(1): 1174, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-35064187

RESUMEN

To predict global warming impacts on parasitism, we should describe the thermal tolerance of all players in host-parasite systems. Complex life-cycle parasites such as trematodes are of particular interest since they can drive complex ecological changes. This study evaluates the net response to temperature of the infective larval stage of Himasthla elongata, a parasite inhabiting the southwestern Baltic Sea. The thermal sensitivity of (i) the infected and uninfected first intermediate host (Littorina littorea) and (ii) the cercarial emergence, survival, self-propelling, encystment, and infection capacity to the second intermediate host (Mytilus edulis sensu lato) were examined. We found that infection by the trematode rendered the gastropod more susceptible to elevated temperatures representing warm summer events in the region. At 22 °C, cercarial emergence and infectivity were at their optimum while cercarial survival was shortened, narrowing the time window for successful mussel infection. Faster out-of-host encystment occurred at increasing temperatures. After correcting the cercarial emergence and infectivity for the temperature-specific gastropod survival, we found that warming induces net adverse effects on the trematode transmission to the bivalve host. The findings suggest that gastropod and cercariae mortality, as a tradeoff for the emergence and infectivity, will hamper the possibility for trematodes to flourish in a warming ocean.


Asunto(s)
Aclimatación , Organismos Acuáticos/fisiología , Gastrópodos/parasitología , Trematodos/patogenicidad , Infecciones por Trematodos/veterinaria , Animales , Cercarias/aislamiento & purificación , Cercarias/patogenicidad , Cercarias/fisiología , Calentamiento Global , Interacciones Huésped-Parásitos , Calor/efectos adversos , Mytilus edulis , Estaciones del Año , Trematodos/aislamiento & purificación , Trematodos/fisiología , Infecciones por Trematodos/diagnóstico , Infecciones por Trematodos/parasitología , Infecciones por Trematodos/transmisión
19.
Ann Rev Mar Sci ; 14: 25-48, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34314598

RESUMEN

To better understand life in the sea, marine scientists must first quantify how individual organisms experience their environment, and then describe how organismal performance depends on that experience. In this review, we first explore marine environmental variation from the perspective of pelagic organisms, the most abundant life forms in the ocean. Generation time, the ability to move relative to the surrounding water (even slowly), and the presence of environmental gradients at all spatial scales play dominant roles in determining the variation experienced by individuals, but this variation remains difficult to quantify. We then use this insight to critically examine current understanding of the environmental physiology of pelagic marine organisms. Physiologists have begun to grapple with the complexity presented by environmental variation, and promising frameworks exist for predicting and/or interpreting the consequences for physiological performance. However, new technology needs to be developed and much difficult empirical work remains, especially in quantifying response times to environmental variation and the interactions among multiple covarying factors. We call on the field of global-change biology to undertake these important challenges.


Asunto(s)
Organismos Acuáticos , Organismos Acuáticos/fisiología , Océanos y Mares
20.
Sci Total Environ ; 818: 151782, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34800448

RESUMEN

Ocean acidification (OA) represents a threat to marine organisms and ecosystems. However, OA rarely exists in isolation but occurs concomitantly with other stressors such as ultraviolet radiation (UVR), whose effects have been neglected in oceanographical observations. Here, we perform a quantitative meta-analysis based on 373 published experimental assessments from 26 studies to examine the combined effects of OA and UVR on marine primary producers. The results reveal predominantly additive stressor interactions (69-84% depending on the UV waveband), with synergistic and antagonistic interactions being rare but significantly different between micro- and macro-algae. In microalgae, variations in interaction type frequencies are related to cell volume, with antagonistic interactions accounting for a higher proportion in larger sized species. Despite additive interactions being most frequent, the small proportion of antagonistic interactions appears to have a stronger power, leading to neutral effects of OA in combination with UVR. High levels of UVR at near in situ conditions in combination with OA showed additive inhibition of calcification, but not when UVR was low. The results also reveal that the magnitude of responses is strongly dependent on experimental duration, with the negative effects of OA on calcification and pigmentation being buffered and amplified by increasing durations, respectively. Tropical primary producers were more vulnerable to OA or UVR alone compared to conspecifics from other climatic regions. Our analysis highlights that further multi-stressor long-term adaptation experiments with marine organisms of different cell volumes (especially microalgae) from different climatic regions are needed to fully disclose future impacts of OA and UVR.


Asunto(s)
Ecosistema , Agua de Mar , Organismos Acuáticos/fisiología , Concentración de Iones de Hidrógeno , Océanos y Mares , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA